【OpenVINO™】在C#中使用 OpenVINO™ 部署 YOLOv10 模型实现目标
最近YOLO家族又添新成员:YOLOv10,YOLOv10 提出了一种一致的双任务方法,用于无nms训练的YOLOs,它同时带来了具有竞争力的性能和较低的推理延迟。此外,还介绍了整体效率-精度驱动的模型设计策...
【OpenVINO™】在 C# 中使用OpenVINO™ 部署PP-YOLOE实现物体检测
PP-YOLOE是基于PP-YOLOv2的优秀单级无锚模型,超越了各种流行的YOLO模型。PP-YOLOE有一系列型号,命名为s/m/l/x,通过宽度乘数和深度乘数进行配置。PP-YOLOE避免使用特殊的运算符,如可变形卷积...
【OpenVINO™】基于 C# 和 OpenVINO™ 部署 Blazeface 模型实现人脸检测
Blazeface模型是Google推出的一款专为移动GPU推理量身定制的轻量级且性能卓越的人脸检测器,BlazeFace 在旗舰移动设备上以200-1000 + FPS的速度运行。 在本文中,我们将使用OpenVINO™ C# API ...
【OpenVINO™】使用OpenVINO™ C# API 部署 YOLO-World实现实时开放词汇对象检测
YOLO-World是一个融合了实时目标检测与增强现实(AR)技术的创新平台,旨在将现实世界与数字世界无缝对接。该平台以YOLO(You Only Look Once)算法为核心,实现了对视频中物体的快速准确识别,...
【YoloDeployCsharp】基于.NET Framework的YOLO深度学习模型部署测试平台
基于.NET Framework 4.8 开发的深度学习模型部署测试平台,提供了YOLO框架的主流系列模型,包括YOLOv8~v9,以及其系列下的Det、Seg、Pose、Obb、Cls等应用场景,同时支持图像与视频检测。模型部...
TensorRT C# API 项目更新 (1):支持动态Bath输入模型推理
开发了TensorRT C# API 2.0版本,该版本在开发时充分考虑了上一版本应用时出现的问题,并进行了改进。为了更加方便开发者使用,在本次更新中增加了对动态输入模型的支持,将在本技术文中详细介...
TensorRT C# API 项目介绍:基于C#与TensorRT部署深度学习模型
开发了TensorRT C# API 2.0版本,该版本在开发时充分考虑了上一版本应用时出现的问题,并进行了改进。同时在本版本中,我们对接口进行了优化,使用起来更加简单,并同时提供了相关的应用案例,...
【OpenCV】OpenCV (C++) 与 OpenCvSharp (C#) 之间数据通信
在实际使用中,由于涉及到不同编程语言之间互相调用,导致C++ 中的OpenCV与C#中的OpenCvSharp 图像数据在不同编程语言之间难以有效传递。在本文中我们将结合OpenCvSharp源码实现原理,探究两种...
【OpenVINO™】在 MacOS 上使用 OpenVINO™ C# API 部署 Yolov5
YOLOv5 是革命性的 '单阶段'对象检测模型的第五次迭代,旨在实时提供高速、高精度的结果,是世界上最受欢迎的视觉人工智能模型,代表了Ultralytics对未来视觉人工智能方法的开源研究,融合了数...
【OpenVINO™】在 Windows 上使用 OpenVINO™ C# API 部署 Yolov8-obb 实现任意方向的目标检测
Ultralytics YOLOv8 基于深度学习和计算机视觉领域的尖端技术,在速度和准确性方面具有无与伦比的性能。其流线型设计使其适用于各种应用,并可轻松适应从边缘设备到云 API 等不同硬件平台。YOLO...