Datawhale 组队学习 camel-agents task1 notes: camel agent framework demo, modelscope

datawhale 教程

modelscope

poetry 换源


环境:
kubuntu
poetry
python3.10
camel

任务:
跑通 camel demo

demo code

from camel.agents import ChatAgent
from camel.models import ModelFactory
from camel.types import ModelPlatformType

from dotenv import load_dotenv
import os

load_dotenv()

api_key = os.getenv('QWEN_API_KEY')

model = ModelFactory.create(
    model_platform=ModelPlatformType.OPENAI_COMPATIBLE_MODEL,
    model_type="Qwen/Qwen2.5-72B-Instruct",
    url='https://api-inference.modelscope.cn/v1/',
    api_key=api_key
)

agent = ChatAgent(
    model=model,
    output_language='中文'
)

response = agent.step("你好,你是谁?")
print(response.msgs[0].content)
from colorama import Fore

from camel.societies import RolePlaying
from camel.utils import print_text_animated
from camel.models import ModelFactory
from camel.types import ModelPlatformType

from dotenv import load_dotenv

import os

load_dotenv(dotenv_path='.env')

api_key = os.getenv('QWEN_API_KEY')

model = ModelFactory.create(
    model_platform=ModelPlatformType.OPENAI_COMPATIBLE_MODEL,
    model_type="Qwen/Qwen2.5-72B-Instruct",
    url='https://api-inference.modelscope.cn/v1/',
    api_key=api_key
)

def main(model=model, chat_turn_limit=50) -> None:
    task_prompt = "为股票市场开发一个交易机器人"#设置任务目标
    role_play_session = RolePlaying(
        assistant_role_name="Python 程序员",#设置AI助手角色名
        assistant_agent_kwargs=dict(model=model),
        user_role_name="股票交易员",#设置用户角色名,在roleplay中,user用于指导AI助手完成任务
        user_agent_kwargs=dict(model=model),
        task_prompt=task_prompt,
        with_task_specify=True,
        task_specify_agent_kwargs=dict(model=model),
        output_language='中文'#设置输出语言
    )

    print(
        Fore.GREEN
        + f"AI 助手系统消息:\n{role_play_session.assistant_sys_msg}\n"
    )
    print(
        Fore.BLUE + f"AI 用户系统消息:\n{role_play_session.user_sys_msg}\n"
    )

    print(Fore.YELLOW + f"原始任务提示:\n{task_prompt}\n")
    print(
        Fore.CYAN
        + "指定的任务提示:"
        + f"\n{role_play_session.specified_task_prompt}\n"
    )
    print(Fore.RED + f"最终任务提示:\n{role_play_session.task_prompt}\n")

    n = 0
    input_msg = role_play_session.init_chat()
    while n < chat_turn_limit:
        n += 1
        assistant_response, user_response = role_play_session.step(input_msg)

        if assistant_response.terminated:
            print(
                Fore.GREEN
                + (
                    "AI 助手已终止。原因: "
                    f"{assistant_response.info['termination_reasons']}."
                )
            )
            break
        if user_response.terminated:
            print(
                Fore.GREEN
                + (
                    "AI 用户已终止。"
                    f"原因: {user_response.info['termination_reasons']}."
                )
            )
            break

        print_text_animated(
            Fore.BLUE + f"AI 用户:\n\n{user_response.msg.content}\n"
        )
        print_text_animated(
            Fore.GREEN + "AI 助手:\n\n"
            f"{assistant_response.msg.content}\n"
        )

        if "CAMEL_TASK_DONE" in user_response.msg.content:
            break

        input_msg = assistant_response.msg

if __name__ == "__main__":
    main()

experience

在服务器上跑了 task1
挺顺利的
camel repo 好像还有 gradio demo 等示例

学习内容:
poetry
camel-ai 基本使用

modelscope
ark
siliconflow
平台多得很,看你怎么用

further explore

camel/examples/

https://docs.camel-ai.org/

https://github.com/camel-ai/owl

来源链接:https://www.cnblogs.com/krisspy/p/18765485

© 版权声明
THE END
支持一下吧
点赞10 分享
评论 抢沙发
头像
请文明发言!
提交
头像

昵称

取消
昵称表情代码快捷回复

    暂无评论内容