视频解析图片识别人脸采集并切图video-clip-images,face-api.js

video-clip-images

采集视频中的人脸并截取

  • Demo是通过face-api实现的。具体内容可前往Github:face-api
  • 注: 返回大部分使用的都是base64
  • Demo地址放在了码云上:video-clip-images

目录结构

video-clip-images/
├── face-api.js-master/
│   ├── weights/ 模型
│   │   └── ...
├── js/ 脚本
│   └── ...
└── index.html

第一步加载模型

await faceapi.nets.tinyFaceDetector.loadFromUri(
    "./face-api.js-master/weights"
);

第二步 通过传入的url 获取每一秒的图片

  async getVideoFace(url) {
    const video = document.createElement("video");
    const canvas = document.createElement("canvas");
    video.src = url;
    await new Promise((resolve) => {
      video.addEventListener("loadedmetadata", () => {
        resolve();
      });
    });
    const duration = video.duration;
    const ctx = canvas.getContext("2d");
    canvas.width = video.videoWidth;
    canvas.height = video.videoHeight;
    const frameData = [];
    for (let i = 0; i < duration; i++) {
      video.currentTime = i;
      await new Promise((resolve) => {
        video.addEventListener("seeked", function handler() {
          video.removeEventListener("seeked", handler);
          ctx.drawImage(video, 0, 0, canvas.width, canvas.height);
          const base64 = canvas.toDataURL("image/jpeg");
          frameData.push({
            base64,
            second: i,
          });
          resolve();
        });
      });
    }

    return frameData;
  }

第三步 处理每一秒的图片并裁剪

  • detectFrame获取人物在图中的位置
  • getClipImage获取裁剪后的图片
      getClipImage(box, image) {
      const newCanvas = document.createElement("canvas");
      const newCtx = newCanvas.getContext("2d");
      newCanvas.width = box.width;
      newCanvas.height = box.height;
      newCtx.drawImage(
        image,
        box.x,
        box.y,
        box.width,
        box.height,
        0,
        0,
        box.width,
        box.height
      );
      const base64Data = newCanvas.toDataURL("image/png");
      let img = document.createElement("img");
      img.src = base64Data;
      return base64Data;
     }
    
  • 通过第二步获取的data使用detectFrame获取box
  • 通过filter过滤box为空也就是没有获取到人脸。
  • 最后使用getClipImage获取到裁剪后的图片
  async install(url) {
    let data = await this.getVideoFace(url);
    const detectFrame = async (img) => {
      let box;
      const detections = await faceapi.detectAllFaces(
        img,
        new faceapi.TinyFaceDetectorOptions()
      );
      detections.forEach((detection) => {
        box = detection.box;
      });
      return box;
    };
    data = data.map((item) => {
      return new Promise((resolve, reject) => {
        let img = new Image();
        img.onload = async () => {
          item.box = await detectFrame(img);
          item.img = img;
          resolve(item);
        };
        img.src = item.base64;
      });
    });
    data = await Promise.all(data);
    console.log(`本次处理耗时:${this.numb}秒`);
    clearInterval(this.time);
    return data
      .filter((i) => Boolean(i.box))
      .map((item) => {
        item.clipImage = this.getClipImage(item.box, item.img);
        return item;
      });
  }

报告!菜坤后端要Blob

  • 工资分我一份!!!!!
  • 处理裁剪好的base64base64ToBlob(item.clipImage)
      new ClipImages("./2025419-450082.mp4").then((data) => {
          data.forEach((item) => {
            let img = document.createElement("img");
            img.src = item.clipImage;
            document.body.appendChild(img);
            item.clipImageBlob = base64ToBlob(item.clipImage)
          });
          console.log(data);
      });
    
  • base64ToBlob代码片段
    function base64ToBlob(base64, contentType = "image/png") {
      // 去掉 Base64 编码字符串的前缀
      const sliceIndex = base64.indexOf(",") + 1;
      const base64Data = base64.slice(sliceIndex);
    
      // 解码 Base64 数据
      const binary = atob(base64Data);
      const length = binary.length;
      const buffer = new ArrayBuffer(length);
      const view = new Uint8Array(buffer);
    
      // 将二进制字符串转换为 Uint8Array
      for (let i = 0; i < length; i++) {
          view[i] = binary.charCodeAt(i);
      }
    
      // 创建 Blob 对象
      return new Blob([view], { type: contentType });
    }
    

效果图

来源链接:https://www.cnblogs.com/ooo51o/p/18836320

© 版权声明
THE END
支持一下吧
点赞9 分享
评论 抢沙发
头像
请文明发言!
提交
头像

昵称

取消
昵称表情代码快捷回复

    暂无评论内容