拓扑排序的结果序列反应了有向图中前顶点的前驱后继关系。所以,手算拓扑排序很简单,每次检查入度为0的顶点,删除从此顶点出发的边,将该顶点加入拓扑排序序列即可。
Kahn算法其实就是模拟这个过程,不过其核心的优化在于将采用BSF的方式来进行,同时维护一个入度数组,每次加入一个顶点就更新入度数组,并且若入度为0则加入BSF的队列里供后续排序时访问即可。Kahn算法时间复杂度在O(|V|+|E|)
,空间复杂度则和一般的BSF一样是O(|V|)
所以有如下代码
int kahn_toplogical_Sort(adjList &aGraph, int sequence[]) {
// 计算顶点入度
int *indegree = (int*)calloc(aGraph.vnum, sizeof(int));
for(int i = 0; i < aGraph.vnum; ++i)
for(arcNode *p = aGraph.vexlist[i].firstarc; p != nullptr; p = p->nextarc) {
++(indegree[p->adjVex]);
}
// 顶点队列初始化
int *vex_Q = (int*)malloc(sizeof(int) * aGraph.vnum);
int rear = 0, front = 0;
for(int i = 0; i < aGraph.vnum; ++i)
if(indegree[i] == 0)
vex_Q[rear++] = i;
int insequence = 0;
while(rear != front) {
int vex = vex_Q[front++];
for(arcNode *p = aGraph.vexlist[vex].firstarc; p != nullptr; p = p->nextarc) {
--(indegree[p->adjVex]);
if(indegree[p->adjVex] == 0)
vex_Q[rear++] = p->adjVex;
}
sequence[insequence++] = vex;
}
free(indegree);
free(vex_Q);
if(insequence < aGraph.vnum) //排序失败
return 0;
return 1; //排序成功
}
来源链接:https://www.cnblogs.com/RodneyTang/p/19018790
没有回复内容